تبلیغات
گروه آموزشی مکانیک خودرو استان یزد - انواع کلاچ خودرو 3

انواع کلاچ خودرو 3

شنبه 23 مهر 1390 10:56 ق.ظنویسنده : گروه مکانیک خودرو

 
  عملگر الکترونیکی:
این نوع عملگر در واقع عملگر هیدرولیکی است که به شیوه الکترونیکی کنترل می شود. این نوع کلاچ به پدال نیاز ندارد. حسگرها اطلاعات لازم درباره دریچه گاز ، موتور ، کلاچ و جعبه دنده را به یک مدول کنترل الکترونیکی می فرستند. وقتی راننده دنده را جابجا می کند، مدول کنترل الکترونیکی به دستکاه محرک هیدرولیکی سیگنال می فرستد. این دستگاه فشار سیال را در سیلندر هیدرولیکی کنترل می کند تا کلاچ را درگیر یا خلاص کند. کلاچ به سرعت خلاص می شود و در حالت خلاص می ماند تا راننده دسته دنده را رها کند. (شکل1-19)
کلاچ خودکار انواع دیگری هم دارد. همه این کلاچها هنگامی خلاص می شوندکه واحد کنترل سیگنال مقتضی را به یک کارانداز برقی، هیدرولیکی، بادی یا خلاء بفرستد.  

کلاچ 

شکل1-19 طرح کلاچ الکترونیکی در خودرو  

 عملگر نیوماتیک ( خلاء (
در نوع از عملگرها قسمتی از خلاء موجود در منیفولد موتور برای عمل کلاچ در نظر گرفته می شود. در این سیستم همانطور که مشاهده می شود یک منبع توسط یک شیر یکطرفه به منیفولد ورودی متصل است و از طرفی دیگر توسط یک عملگر سلنوئیدی به یک سیلندر خلاء وصل می شود. خود سلنوئید نیز از طریق یک مدار الکتریکی و باتری تغذیه می شود. سیلندر خلاء شامل یک پیستون است که از یکطرف در معرض فشار اتمسفر قرار دارد. این پیستون توسط میله ای رابط به کلاچ متصل است و جابجایی پیستون سبب عمل کردن کلاچ می گردد. در حالت اختناق خلاء کافی در منیفولد ورودی موتور وجود دارد. وقتی شیر اختناق بازتر می شود، فشار منیفولد افزایش می یابد اما این افزایش فشار خود به افزایش فشار شیر یکطرفه در حالت بسته بستگی دارد. بنابراین همیشه مقداری خلاء وجود دارد.
در حالتی که سوئیچ باز باشد، شیر سلنوئیدی در پایین ترین حالت خود قرار می گیرد که در این حالت در هر دو طرف پیستون درون سیلندر، خلاء وجود دارد. هنگامی که راننده قصد تعویض دنده را داشته باشد، با فشردن عملگری در کابین خود در واقع سوئیچ این مدار الکتریکی را می بندد. بسته شدن سوئیچ سبب عمل کردن سلنوئید و بالا آمدن شیر سلنوئیدی می شود و در واقع فضای پشت پیستون در سیلندر خلاء به فضای منبع متصل می شود و در این حالت چون فشار پشت پیستون یکسان نیست، پیستون جابجا شده و کلاچ از فلایویل جدا می شود. (شکل1-20)

عملگر نیوماتیک 

شکل1-20 شماتیکی از عملگر نیوماتیک کلاچ

 کلاچ هیدرولیک:

از کلاچهای هیدرولیک در گیربکسهای اتوماتیک استفاده می شود. یک گیربکس به تنهایی تمام اتوماتیک نیست. مگر اینکه شامل مکانیزمی باشد که بتواند بطور اتوماتیک ارتباط موتور و گیر بکس را قطع و وصل کند. وسایلی که این کار را انجام می دهند کوپلینگ های هیدرولیکی و مبدلهای گشتاور هستند. که هر دو گشتاور موتور را به گیر بکس منتقل می کنند. اما مبدل گشتاور قادر به افزایش گشتاور موتور است در حالی که کوپلینگ هیدرولیکی این توانایی را ندارد.

 کوپلینگ هیدرولیک:
یک کوپلینگ هیدرولیکی شامل یک پمپ (ایمپلر) و یک توربین با پره های داخلی است که روبروی هم قرار گرفته اند. پمپ بوسیله یک صفحه به فلایویل متصل است و توربین نیز به شافت ورودی گیربکس متصل می شود. پمپ عضو محرک و توربین عضو متحرک است)شکل1-21(
پمپ و توربین هر دو در یک محفظه آب بندی شده قرار دارند. روغن بوسیله پمپ داخل گیربکس به داخل محفظه کوپلینگ ارسال می شود. زمانی که ایمپلر بوسیله موتور می چرخد پره هایش روغن را گرفته و به سوی توربین پمپ می کند. سیال در داخل کوپلینگ دو مسیر را طی می کند : جریان گردابی و جریان دورانی.
جریان دورانی سیال ، مسیر دایره ای است که در نتیجه چرخش ایمپلر ایجاد می شود. به عبارت دیگر سیال حول دایره ای که محور آن میل لنگ و محور ورودی گیر بکس است جریان می یابد. از طرفی هنگامی ک سیال در مسیر دایره ای حرکت می کند، نیروی گریز از مرکز آن را به سوی کناره های ایمپلر پرتاب می کند. بخاطر انحناء ایمپلر هنگامی که سیال به کناره های خروجی ایمپلر می رسد به دور خود می چرخد و به سوی توربین جاری می شود. سپس سیال در یک مسیر چرخشی ثانویه که با مسیر جریان دورانی اولیه زاویه 90 در جه می سازد جاری می شود. جریان روغن در این مسیر را جریان گردابی می نامند.
سیال در کوپلینگ هیدرولیکی بطور همزمان هر دو مسیر دورانی و گردابی را می پیماید. جریان دورانی که به وسیله ایمپلر ایجاد می شود گشتاور چرخشی موتور را حمل می کند. گشتاور بدون جریان گردابی که سیال را از ایمپلر تا توربین حرکت می دهد نمی تواند به گیر بکس منتقل شود.

نیروی چرخشی پره های ایمپلر به صورت ترکیبی از جریان های گردابی و چرخشی سیال بر روی پره های توربین اعمال می شود. سیالی که ایمپلر در حال چرخش را ترک می کند و به سوی توربین جاری می شود هنگام خروج تنها دارای حرکت گردابی و یا دورانی نیست بلکه دارای ترکیبی از هر دو حرکت است.

 

شکل1-21 اجزا و عملکرد کوپلینگ هیدرولیکی  

مسیر جریانهای تر کیب شده یک نیروی برآیند تولید می کند که از ایمپلر تحت زاویه خاصی به سوی توربین خارج می شوند. هنگامی که نیروی سیال پرتاب شده به سوی توربین به قدر کافی باشد، توربین می چرخد و شافت ورودی گیربکس را می گرداند.


 مبدل گشتاور:
مبدل گشتاورشامل سه عضو است که در داخل محفظه ای که بوسیله پمپ گیربکس پر از روغن می شود قرار دارند. این سه عضو عبارتند از :
   -
ایمپلر Impler
    -
توربینTurbine
    -
استاتور Stator

تعداد پره های پمپ و توربین برابر نیستند و برای جلوگیری از ایجاد ضربه و تشدید در چرخش آنها معمولاً دو سه پره با هم اختلاف دارند. (شکل1-23(  

مبدل گشتاور 

شکل1-23 اجزای مختلف مبدل گشتاور


روغن هایی که بوسیله پمپ به مبدل ارسال می شوند، به وسیله پره های ایمپلر جذب شده و از طریق جریان گردابی و دورانی مشابه کوپلینگ هیدرولیکی به طرف توربین پرتاپ می شوند. بزرگترین اختلاف بین جریان روغن درون مبدل درمقایسه با کوپلینگ این است که در مبدل هنگام کم بودن سرعت افزایش گشتاور ایجاد می شود. افزایش گشتاور هنگامی که روغن پره های توربین را ترک و به قسمت مقعر پره های استاتور برخورد می کند ایجاد می شود. این پره ها مسیر روغن خارج شده از توربین را اصلاح می کنند. بنابراین روغن های در حال پمپ شدن از سوی ایمپلر را به تیغه بعدی توربین هدایت می کنند. نیروی جریان وغن از استاتور، با شتاب دادن به جریان روغن در حال ارسال از ایمپلر مقدار گشتاور منتقل شده از ایمپلر به توربین را افزایش می دهد. این حالت مرحله افزایش گشتاور نامیده می شود.
افزایش گشتاور زمانی صورت می گیرد که جریان گردابی یک چرخش کامل از ایمپلر به توربین و دوباره از طریق استاتور به ایمپلر انجام دهد. این حالت بدین معنی است که تورک کنورتور، گشتاور موتور را به تناسب نسبت سرعت بین ایمپلر و توربین افزایش می دهد. در نسبت سرعت های پایین هنگامی که ایمپلر به سرعت، اما توربین به آرامی می چرخد جریان گردابی شدید است، لذا افزایش گشتاور نیز زیاد خواهد بود. به محض اینکه توربین سریعتر بچرخد و به سرعت ایمپلر برسد جریان دورانی افزایش می یابد. که در این صورت ، هم جریان گردابی و هم افزایش گشتاور کاهش می یابد. هنگامی که نسبت سرعت به 90% برسد افزایش گشتاور کمترین مقدار است . هنگامی که نسبت سرعت ایمپلر و توربین به 90% برسد، جریان روغن در مبدل تقریباً دورانی می شود و زاویه جریان روغن از توربین به استاتور به خط مستقیم نزدیکتر می گردد. در نتیجه جریان روغنی که به قسمت محدب (پشت پره) استاتور برخورد می کند بیشتر از قسمت مقعر است. هنگامی که سرعت جریان روغن افزایش یابد بطوریکه بتواند استاتور رادر جهت عقربه های ساعت بگرداند، ایمپلر، توربین و استاتور در یک جهت و تقریبا با یک سرعت می چرخند. این مرحله کوپلینگ مبدل نامیده می شود.
از مزایای مهم استفاده از مبدلهای گشتاور نسبت به کلاچهای معمولی این است که انتقال گشتاور درخودروهای شامل مبدلها به نرمی صورت می گیرد و نیاز به تنظیم خاصی ندارد. همچنین این خودروها می توانند با دنده درگیر نیز متوقف شده و یا حرکت کنند، بنابراین در این زمینه به مهارت خاصی از جانب راننده نیاز ندارد. اما با این حال در دورهای بسیار پایین و در لغزش % 100 هم بعلت وجود لزجت ، هنوز مقداری گشتاور روی محور خروجی وجود دارد. شاید از بزرگترین معایب این مبدلها این است که در دنده های درگیر نیز مقداری لغزش خواهیم داشت و همانند کلاچهای اصطکاکی در هنگام درگیری مداوم راندمان 100% را نخواهیم داشت. راندمان یک کلاچ هیدرولیک را اینگونه می توان محاسبه نمود :


100×
توان محور ورودی کلاچ / توان محور خروجی کلاچ = راندمان کلاچ هیدرولیک


اخیراً برای جبران این نقیصه از مبدل گشتاور اصطکاکی استفاده می کنن. (شکل1-25) در این نوع مبدلها از مزیای کلی مبدلها استفاده می شود با این تفاوت که جهت رفع لغزش در هنگام درگیری دائمی، سیستم کلاچ اصطکاکی که در کنار مبدل گشتاور قرار دارد مورد استفاده قرار می گیرد، در واقع در این حالت پمپ و توربین کلاً به یک جسم صلب تبدیل شده و با هم شروع به چرخش می کنند.
از دیگر مزایای مبدلهای گشتاور نسبت به کلاچهای اصطکاکی این است که تقریباً تمامی نوسانات سیستم انتقال قدرت یا موتور در این نوع سیستم مستهلک می شود و نیز بعلت عدم وجود سایش بر روی قطعات متحرک، نیازبه تعمیر و نگهداری کمتری دارد.
 

 

 منبع :  http://enterdata.ir/pe/content/view/78/84/


آخرین ویرایش: - -

 
 
لبخندناراحتچشمک
نیشخندبغلسوال
قلبخجالتزبان
ماچتعجبعصبانی
عینکشیطانگریه
خندهقهقههخداحافظ
سبزقهرهورا
دستگلتفکر